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formal group of space-time 
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Tilman, BLtiment B5, B4000 Liege 1, Belgium 

Received 24 July 1978, in final form 15 January 1979 

Abstract. Tensor fields invariant under some maximal subgroups of the conformal group of 
space-time are determined. The infinitesimal method is applied from conformal point 
transformations discussed by Fulton, Rohrlich and Witten. ’Electromagnetic’ skew-sym- 
metric tensors F ( x ) ,  ’electromagnetic’ four-potentials A(w) and scalar densities @(x) are 
studied with respect to the conditions of invariance under SO(3)@S0(2, l), 0 ( 3 , 2 )  and 
O(2) c30(4). 

1. Introdnction 

The growing interest in conformal invariance in very recent studies has been manifest 
since the late sixties (Barut and Brittin 1971). The conformal group of space-time is 
indeed one of the current main symmetry groups under study in theoretical physics. 
General relativity and cosmological models, quantum mechanics of the hydrogen atom, 
particle physics, etc, are some of the many fields which underline the need for some 
invariance under conformal transformations. 

In fact, the conformal group of space-time has been recognised for a long time as the 
invariance group of Maxwell’s equations (Bateman 1910, Cunningham 1910) and of 
the other massless particle equations (Dirac 1936, Kastrup 1962 and references 
therein). Moreover particles with non-zero mass and their associated fields and 
equations are currently studied in connection with conformal invariance (Fubini 1976, 
De Alfaro and Furlan 1976, De Alfaro et a1 1976a). 

General information on the conformal group can easily be found (Kastrup 1962, 
Mack and Salam 1969, Ferrara et a1 1973). Furthermore, a recent subalgebra analysis 
of the conformal algebra has been achieved (Patera er a1 1974, 1977a). In particular, 
the maximal subgroups of the conformal group are known through this subalgebra 
analysis (Patera et a1 1977b) and some of these maximal subgroups actually play a 
prominent role in the physical studies above. For instance, the de Sitter groups O(4 , l )  
and 0 ( 3 , 2 )  are of very special interest, as everybody knows, but, in connection with 
Fubini’s works, the 0 ( 3 , 2 )  maximal subgroup of the conformal group is exploited more 
extensively (Fubini 1976, De Alfaro eta1 1976a, b, Girardello and Pallua 1977). Other 
recent approaches have also pointed out the particular interest of some (other) maximal 
subgroups like 0 ( 2 ) 0 0 ( 4 )  and S 0 ( 3 ) 0 S 0 ( 2 ,  1) (Englefield 1972, De Alfaro er a1 
1976b, 1977, Schechter 1978, Rebbi 1978, Harnad and Vinet 1978). 
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In this paper, we want to determine tensor fields invariant under each of these three 
maximal subgroups S 0 ( 3 ) 0 S 0 ( 2 ,  l ) ,  0 (3 ,2 )  and 0 ( 2 ) 0 0 ( 4 )  of the conformal group. 
From the conformal point transformations discussed by Fulton et a1 (1962), we shall 
develop an infinitesimal method in order to get the invariance conditions on skew- 
symmetric tensor fields of order two (F), four-vectors (A) and scalar densities (@). In a 
sense, this method generalises to the conformal group some recent studies on the 
PoincarC group and its subgroups (Bacry et a1 1970, Combe and Sorba 1975, Beckers 
and ComtC 1976,1979). The method has already been mentioned elsewhere (Beckers 
et a1 1978) but here we start from the conformal point transformations; we also treat 
applications which are not considered in the reference above. 

In fact, F- and A-invariant fields will be studied because these tensors correspond to 
meaningful ‘electromagnetic’ quantities when the Maxwell thepry is considered. 
Moreover, as scalar densities enter, for instance, in up-to-date Lagrangian 
approaches (Fubini 1976), they will also be determined. Finally, through the proposed 
applications, we shall illustrate different kinds of difficulties characteristic of the 
infinitesimal method: the determination of the interesting O(2) 0 O(4)-invariant A field 
will be by itself a typical example. 

Section 2 will be devoted to some notations and elements on the conformal group 
and its maximal subgroups. Following the developments of Fulton eta! (1962), we shall 
give the general invariance conditions on F, A and @ in 9: 3. Section 4 will contain the 
specifications of the infinitesimal method and the corresponding conditions in terms of 
meaningful physical quantities. In 8 5 ,  we shall be concerned with some applications of 
the invariance conditions to the three maximal subgroups above. Section 6 will give a 
summary of the results and allow us to present some conclusions connected with other 
approaches and with differential geometry underlying an important part of such 
developments. In the appendix we shall discuss specific points necessary to the 
determination of the 0(2)00(4)-invariant ‘four-potential’. 

2. Notations and comments on the maximal subgroups of the conformal group 

If we refer to space-time events x = { x ” ,  CL = 0, 1 ,2 ,3)} = { x  = t, x ’  = x ,  x = y ,  x = z }  
= { t ,  r }  with the (Minkowski) metric tensor GM={g”’}=diag(l, -1, -1, -l), we have 

(2.1) 

0 2 3 

2 0 2  2 2 2  x . x = ( x )  = ( x  ) -(x) = t  - r  

where 

r = I r l = ( ~ ~ + y ~ + z * ) ~ ’ ~ .  (2.2) 
The conformal group of space-time is then a fifteen-parameter Lie group of 

(continuous) transformations corresponding to four translations ( a  ”, P” ), six restricted 
(proper and orthochronous) homogeneous Lorentz transformations (U = 
-U””, M””), one dilatation (p,  D )  and four special conformal transformations (c ” ,  C”) 
where (. . . , . . .) corresponds to the associated parameters and generators respectively 
(Kastrup 1962, Beckers and Jaminon 1978). The corresponding infinitesimal 
coordinate transformations have the following forms: 

a 
x + x ’  : x’”  = x ”  +a” (CL = 0 ,1 ,2 ,3 )  ( 2 . 3 ~ )  

x + x ’ : x ‘ ”  = x ” + ” ” J u  (2.36) 
w 
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x -r: x ( : x I ’  =x’  +px’  ( 2 . 3 ~ )  

x -f, X I :  Xl’ = x c L  +2x”(c .  x )  - c ” ( x ) 2  ( 2 . 3 d )  

when only first-order terms in the parameters are retained. 
It is well known (Kastrup 1962, Mack and Salam 1969) that this conformal group 

has an 0 ( 4 , 2 )  structure. Its subgroup analysis can evidently be determined through the 
subalgebra study of the 0 ( 4 , 2 )  algebra. This has been achieved in very recent Works 
(Patera et a1 1977a, b, Burdet et a1 1978) and, in particular, all the maximal subalge- 
bras of the conformal algebra are known when conjugacy classes are studied under 
conformal transformations (Patera et a1 1977b) or when conjugacy classes are studied 
under PoincarC transformations (Beckers et a1 1978). Under conformal trans- 
formations, there are nine 0 ( 4 , 2 )  conjugacy classes of maximal subalgebras 
corresponding to the following types of Lie groups: SIM(3, l ) ,  OPT(3, l ) ,  0 (3 ,2 ) ,  
0 (4 ,1 ) ,  S[U(1)0U(2,  1)1, 0 ( 2 ) 0 0 ( 4 ) ,  0 ( 2 ) 0 0 ( 2 , 2 ) ,  S 0 ( 3 ) 0 S 0 ( 2 , 1 )  and 
SO(2, 1 ) 0 S 0 ( 2 ,  1). We shall refer to these subgroups as ‘algebraically maximal’ 
subgroups of the conformal group because their Lie algebras are maximal subalgebras 
of the conformal algebra. So, for brevity, we call the nine subgroups above ‘the 
maximal subgroups of the conformal group’. 

As already discussed in the introduction, we restrict ourselves to the consideration 
of only three of the maximal subgroups, i.e.: 

( a )  

( 6 )  

(C) 

S 0 ( 3 ) 0 S 0 ( 2 ,  1): n = 6, {J, Po, D, CO} 

0 ( 3 , 2 ) :  n = 10, {J, K, P’ + C”} 

0 ( 2 ) 0 0 ( 4 ) :  n = 7, {J, Po+ CO, P- C} 

where n is the order of the corresponding subgroup and {. . .} is its corresponding set of 
generators (a basis for its Lie algebra) where we have introduced the usual notations 
{M’”} ={J ,  K} ,  where J and K refer to spatial rotations and to Lorentz boosts 
respectively. 

3. Conformal point transformations and general invariance conditions 

Fulton et a1 (1962, hereafter referred to as FRW) have discussed the conformal point 
transformations and their results have recently been applied (Beckers and Jaminon 
1978) to covariant symmetric tensors of degree two. For brevity, we refer the reader to 
the third section of these two papers for further details. Here, we mention only the 
invariance conditions, under conformal point transformations, on three specific tensors 
of very special interest in physics: 

( a )  a skew-symmetric tensor of degree two ( F  = {FcLy(x)}) ,  
( b )  a vector field (A  ={A-(x)}) and 
( c )  a scalar density ( @ ( x ) ) .  
It can be shown from FRW’s developments that 
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where the scalar function a ( x )  is given by 

U ( X )  = ia”zpa,zP; 
( 6 )  A, (2) = d,x”A, ( x )  

and 
~ ~ ( 2 )  = m-l(x)a, f”A“(x);  

(3.3) 

(3.4) 

(3.5) 

(c) @(X) = m-1/2(x)Q,(x) .  (3.6) 

The equations (3.2), (3.5) and (3.6) will be fundamental in our study: they cor- 
respond to the general conditions of invariance under conformal point transformations 
on contravariant components of the F- and A-tensor fields and on an invariant scalar 
density Q, respectively. 

4. The infinitesimal method and the corresponding invariance conditions on F, A 
and QI, 

Consider the point transformation giving the components of a point ff in a coordinate 
system S when the components of  the point x are known in the same coordinate system. 
It is written 

or, if we study infinitesimal conformal point transformations 
z”  = x w + y  

= x” + a  + ww,xy  + px” + 2x”(c .  x )  - c@x2 

where a”, w”“,  p and ccL are small parameters defined in the specific transformations 
(2.3a)-(2.3d) belonging to the conformal group. 

Through equation (3.3) we easily obtain 

m ( x ) = 1 + 2 p + 4 ( c . x )  (4.4) 

(4.5) ( x )  = 1 - p - 2 ( c .  x )  

a - l ( x )  = 1 -2p - 4 ( c .  x )  (4.6) 
F 2 ( x )  = 1 - 4p - 8 ( ~  . X )  (4.7) 

when only first-order terms in the parameters are retained. The invariance condi- 
tions-equations (3.2),  (3.5) and (3.6)-can then be developed using (4.3) and (4.5)- 
(4.7). 

( a )  Let us study equation (3.2) concerning the contravariant components of the 
skew-symmetric tensor of degree two. If we expand the left-hand side of (3.2) by a 
first-order Taylor development in the neighbourhood of x and its right-hand side by 
introducing (4.3) and (4.7), we finally get the invariance condition on F :  
~ F ( x )  + w Q F ( x )  + 2(x X C) h F ( x )  - [ p  + 2~ . X ] [ X  . V + ~ ] F ( x )  + x2(c . V ) F ( x )  = 0 (4.8) 

-1 /2  
U 

where 
9 = x . W .  V - a . v = xouQA aA - a ‘ a A  (4.9) 

{V,} = {a,} = (a lar ,  alar} (4.10) 
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(W A F)” = w”,FWy - w ”,F“’ 

[X x cy, = XPC,  - X J P  

(4.1 1) 

(4.12) 

and 

[(x x C )  A F]”” = ( X  X c)”,F~” - (X X c ) ” , F ~ ” .  (4.13) 

(6) Equation (3.5) can also be developed through the above steps. With equations 
(4.3), (4.6), (4.9) and (4.12), we easily get the invariance condition on A :  

~ A ( x ) + [ w  + 2 ( ~  X C ) ]  . A ( x ) - [ p  + 2 ~ .  ~ ] [ 1  + x .  V ] A ( X ) + X ’ ( C .  V ) A ( x ) = O .  (4.14) 

(c) If we consider equation (3.6), the invariance condition on @becomes with (4.3), 

(4.15) 

Before we exploit the conditions (4.8), (4.14) and (4.15) in some specific cases, let us 
express the F and A fields in terms of more directly physical quantities so that if the 
Maxwell theory is concerned we could simply interpret these fields as the ‘electromag- 
netic’ tensor and four-vector. This is clear through the correspondences (elz3 = 1) 

Fo’ = E‘ ~ E ’ ~ ~ F , ~  = B’ ( i , j , k = l , 2 , 3 ) S F = { F W ” } = ( E , B )  (4.16) 

A’= V A‘ = A ’  (i = 1 , 2 , 3 ) S A  =(V,  A), (4.17) 

in such a way that we can speak of the ‘electromagnetic’ bivector or tensor F = (E, B )  
and of the ‘electromagnetic’ four-potential A .  

(4.5) and (4.9): 

9 @ ( X )  - [ p  + 2c. X][1+ x . V ] @ ( X )  + X2(C.  V ) @ ( X )  = 0. 

If we define, as usual, the parametrisation of Lorentz transformations by 

(4.18) 81 = 1. I l k  4’ = 2 E  W / k * { W @ ” ) = ( ’ $ ,  6% 

it is easy to see that 

w A F (4 A B + 8 E, 8 A B - 4 h E )  

and 

W .  A =(-&. A,  -V4 + 8  A A).  

(4.19) 

The use of the parametrisation (4.18) leads to the differential operator (4.9): 

9 = ( r .  4)(a/ar) + (t4 + r A 8 )  . (a/&-) - a . V .  (4.20) 

Then, with the definitions (4.16), (4.18) and (4.20), the (Oi) and (ij) components of the 
conditions (4.8) become 

9 E  + 4 h B + 8 A E + 2t(c h B )  - 2c0(f AB) + 2(r A c )  A E 

- [ p  + 2c. X ] [ X .  v +  2]E + x 2 ( c .  V)E = 0 ( 4 . 2 1 ~ )  

and 

9 B  + 8 h B - 4  r\ E-2t(c E)+2c0(r  A E ) + 2 ( r  E\ C )  AB 

- [ p  + 2 ~ .  x][x.  V + 2 ] B  + x 2 ( c .  V)B = 0. (4.21b) 

These relations ( 4 . 2 1 ~ )  and (4.216) are the necessary and sufficient conditions of 
invariance of a general ‘electromagnetic’ tensor under infinitesimal conformal trans- 
formations. 
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In the same way, we can calculate the time and space components of the ‘elec- 
tromagnetic’ four-potential A. From equations (4.14), (4.17), (4.19) and (4.20), we 
finally get 

9 V - 4 .  A -2tc. A +2c0r. A - [ p  + 2c. x][l + x  . V]V+x2(c. V)V = 0 ( 4 . 2 2 ~ )  

and 
9 A  + 8 A A  - V 4  -2(x. A)c +2(c .  A ) r - [ p  + 2 c .  x][1 + X  . VIA + x 2 ( c .  V)A = O .  

(4.22b) 
These equations ( 4 . 2 2 ~ )  and (4.22b) are the necessary and sufficient conditions of 
invariance of a general ‘electromagnetic’ four-vector under infinitesimal conformal 
transformations. 

At this stage, the sets of equations ( 4 . 2 1 ~  b),  (4.22a, b )  andequation (4.15) become 
the fundamental relations which have to be applied in the specific cases announced in 
the introduction. 

As a final comment, let us mention that equations ( 4 . 2 1 ~ )  and (4.216) are the 
generalisations in the context of the conformal group of the Bacry-Combe-Richard 
(1970) and of the Combe-Sorba (1975) conditions on invariant electromagnetic tensors 
under the PoincarC group. In the same way, equations ( 4 . 2 2 ~ )  and (4.226) are the 
generalisations of the Beckers-ComtC (1979) conditions on invariant electromagnetic 
four-vectors under the Euclidean group in three dimensions, conditions discussed in 
connection with other recent contributions (Beckers et a1 1977, Giovannini 1977). 

5. Invariant tensor fields under some maximal subgroups of 0(4,2) 

Let us illustrate the infinitesimal method and thus solve each set of equations (4.15), 
(4.21) and (4.22) in some specific cases of special interest. The three maximal 
subgroups of the conformal group that we want to consider are those mentioned in li 2, 
i.e. S0 (3 )0S0(2 ,  11, 0 ( 3 , 2 )  and 0 ( 2 ) 0 0 ( 4 ) .  For each of these subgroups we 
determine the invariant scalar density @(x) starting from equation (4.15). Then, in the 
case of 0(3 ,2) ,  we show, in addition, from equations (4.21) and (4.22) that the invariant 
F and A fields are trivial, and for 0 ( 2 ) 0 0 ( 4 )  we discuss from equation (4.22) the 
determination of the nontrivial invariant A field. 

5.1. Scalar density @ invariant under S0(3 )0S0(2 ,1 )  

The maximal subgroup S0(3 )0S0(2 ,1 )  is of order six: its Lie algebra is defined by the 
basis (J, Po, D, CO). 

5.1.1. Invariance under Po. (a = (1,0,0,0),  8 = 4 = 0 ,  p = 0,  c” = 0) implies from 
(4.20) and (4.15) 

9 = - ( U ,  V) = -alar a@/at = 0 ,  

so that @ is time independent: Q, = @(r) .  

5.1.2. Invariance under D ( p  > 0 ,  8 = 4 = 0, a ”  = c” = 0) with 9 = 0 and the time 
independence of @ leads to 

(5.1) (1 + r . a/ar)@(r) = 0. 
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This Euler equation indicates that @ is a homogeneous function of dimension d = -1 
with respect to the Cartesian coordinates. The same result is obtained directly from the 
invariance under Co. 

5.1.3. Rotational invariance evidently gives 

@ = @(lrl) = @ ( r )  

so that equations (5 .1)  and (5.2) impose that the scalar density invariant under 
S 0 ( 3 ) 0 S 0 ( 2 , 1 )  necessarily has the form 

@ = Cr-I C = constant. (5.3) 

Let us end this subsection by noting that the specific determinations of an invariant F 
field from (4.21) and of an invariant A field from (4.22) have been effected in a different 
but equivalent context (Beckers et a1 1978). The corresponding F field is nontrivial 
although there is no nontrivial A field invariant under S0(3 )0S0(2 ,  1). 

5.2. Scalar density, F and A fields invariant under 0 ( 3 , 2 )  

The maximal subgroup 0 ( 3 , 2 ) - 0 n e  of the de Sitter groups-is of order ten: its Lie 
algebra is defined by the basis (J, K, P” + C”). 

5.2. I. Scalar density @ invariant under 0 (3,2). Invariance under P” + C@ corresponds 
to the set of parameters 

a‘”’ = (s:, st;, a?, 8 ; )  

@ = ( b = O  p = o  

e ( ” )  = (a:, st;, sf, 6;) 
(5.4) 

and to the differential operator (4.20); 

g‘”’)= - a ‘ ” .  v = +/ax* = -a@. ( 5 . 5 )  

Then equations (4.15), (5.4) and (5.5) lead to the four relations 

(1  -x2)a,@(X) + 2 ~ , ( 1 +  x . v)@(x) = o (P  = 091,293). (5.6) 

A little manipulation on this set gives the relation 

(1 + x2)a@/at + 2 t a  = 0. (5.7) 
Its general solution has the form 

2t dt 

= C ( r ) / ( x 2  + 1). (5 3) 

Introducing the solution (5.8) in the original equations (5.6), we find that C ( r )  has to be 
constant. Hence the scalar density invariant under 0 ( 3 , 2 )  is 

@ ( X )  = C/(X2 + 1) C = constant. (5.9) 

It can easily be shown that invariance under the Lorentz generators (J,  K) does not alter 
this result. 
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5.2.2. ‘Electromagnetic’ F tensor invariant under 0 ( 3 , 2 )  

responds to 
(i) Rotational invariance expressed through equations ( 4 . 2 1 ~ )  and (4.216) cor- 

E = k(r ,  t )r  

B = k‘(r,  t)r .  
(5.10) 

(ii) Invariance under P” + C” gives, with the parameters (5.4) and the differential 
operator ( 5 . 5 ) ,  four pairs of vector equations. By simple combinations of certain of 
these 24 relations, it is easy to show, with (5.10), that we necessarily have 

k = k ’ = O  (5.11) 

so that there is no invariant ‘electromagnetic’ tensor in this case. 

5.2.3. ‘Electromagnetic’ four-vector A invariant under 0 ( 3 , 2 )  
(i) Rotational invariance gives once more 

A = k(r ,  t ) r  and v =  V(r, t ) .  (5.12) 

(ii) Invariance under P” + C” gives, with the parameters (5.4) and the differential 
operator ( 5 . 5 ) ,  the four relations obtained from equations (4.22): 

(x2 - l)(a V/dt) + 2r. A - 2t( 1 + x . V) V = 0 

and (5.13) 

( x 2 -  l )a iV+ 2tAi -2xi ( l  + x  . V)V = 0 ( i  = 1 , 2 , 3 ) .  

A little manipulation of these equations (5.13) leads to the relation 

(x2+  l ) (x  . V)V+2X2V = 0 

(x . V) w = 0 

w = (x2+ 1)V. 

or 

if we define 

(5.14) 

(5.15) 

The Euler equations (5.14) ensures the homogeneous character of W with respect to 
the coordinates x” and its dimension d = 0. We conclude that W is an arbitrary 
constant and consequently that 

v = C/(X2 + 1) C = constant. (5.16) 

(iii) Invariance under K ”  corresponds to the set of parameters 

4 = (1,090) e = o  p = O  a” = c” = 0 (5.17) 
and to the differential operator 

9 = x(a/at) + t(a/ax) (5.18) 

introduced in equations (4.22). We get the four relations 

[x(d/at) + t(a/ax)] V - A” = 0 (5.19) 
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and 

A" V 
[ X ( a / a t )  + t(a/aX)j[;r] - [; 1 = 0. (5.20) 

Substituting the expression (5.16) for V into (5.19), we immediately get 

A" = O  (5.21) 

which, introduced in the first relation (5.20), requires 

v=o. (5.22) 

The invariance under K Y  and K' immediately gives with (5.22) that 

A Y = A Z = O  (5.23) 

so that there exists no nontrivial invariant four-vector in the case of the O(3, 2) 
subgroup. 

5.3. Scalar density Q, and A field invariant under 0 ( 2 ) 0 0 ( 4 )  

The maximal subgroup 0 ( 2 ) 0 0 ( 4 )  is of order seven: its Lie algebra is defined by the 
basis (J,  Po + C O ,  P - C). 

5.3.1. Scalar density Q, invariant under 0 ( 2 ) 0 0 ( 4 )  
(i) Rotational invariance immediately requires 

@(x) = @(r, t ) .  

(ii) Invariance under Po + C O  corresponds to the set of parameters 

a = ( 1 , 0 , 0 , 0 )  c = ( 1 , 0 , 0 , 0 )  e = 4 = o  p = o  

and to the differential operator (4.20): 

9 = -a/at 

(x2- l)(a@/at)-2t(i + x .  v)Q,=o. 
so that equation (4.15) leads to 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

(iii) Invariance under Pi - C' ( i  = 1 ,2 ,3 )  corresponds to the set of parameters 

a"' = (0 ,  s;, s;,  8;) c ( ' ) =  (0 ,  Si,  a;, 8;) e = 4 = o  p = o  (5.28) 

and to the differential operator (4.20): 

g(i1= -a(" v = -a/ax' = -a. (5.29) 

Equation (4.15) gives the three relations 

(x' + i)aia- 2xi(i  + x . V)Q, = o ( i  = 1,  2,3).  (5.30) 

A little manipulation on equations (5.27) and (5.30) leads to the equation 

(5.31) 
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Its general solution has the following form when equation (5.24) is taken into account: 

(5.32) 

(5.33) 

Now, if we introduce (5.33) in the original equations (5.27) and (5.30), we see that C ’ ( r )  
has to be constant so that the final form of the scalar density invariant under 0 ( 2 ) 0 0 ( 4 )  
is 

(5.34) cp = C’[i( 1 - x 2 ) 2  + t 2 ] - ’ / 2  C‘ =constant. 

5.3.2. ‘Electromagnetic’ four-vector A invariant under 0 ( 2 ) 0 0 ( 4 )  
(i) Rotational invariance gives 

A(x) = k(r ,  t )r  = k‘(r,  t ) r / r  (5.35) 

and 

V(x) = V(r,  t )  (5.36) 

where the last equality in (5.35) is introduced for later convenience. 
(ii) Invariance under Po+ CO with (5.25) and (5.26) gives in equations (4.22) 

(1 -x2)(dV/dt)-2r. A +2t(l  + x .  V)V=O (5.37) 

and 

(1  -x*)(dA/at) - 2 V r  + 2t(l + X  . V)A = 0.  (5.38) 

(iii) Invariance under P’ - C’ ( i  = 1 ,2 ,3 )  with (5.28) and (5.29) leads from equa- 
tions (4.22) to the set of relations 

(1 +x2)diV + 2tAj - 2 ~ , (  1 + X  . V) V = 0 

and 

(5.39) 

( 1 + ~ ~ ) ~ ~ A - 2 ( x . A ) e , + 2 A ~ r - 2 x , ( 1 + x . V ) A = O  (5.40) 

where 

e, = (sf, s:, 8 ; )  ( i  = 1 ,2 ,3 ) .  

The integration of the system of equations (5.37)-(5.40) is somewhat tedious and we 
give more details on the explicit calculations in the appendix. Here let us mention that a 
little manipulation on equations (5.37) and (5.39) leads to the following relation 
between V and its derivatives: 

( ~ - x ~ ) ( x . v ) v - ~ x ~ v - ~ ~ ~ v / ~ ~ = o .  (5.41) 

Its general solution may be written (cf appendix) 
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where d(5) is an arbitrary function of the variable 5 defined by 

5 = (1  + ( t  - r)21/[1 + ( t  + r121. (5.43) 

Similar transformations on equations (5.38) and (5.40) permit us to obtain a relation 
between A and its derivatives: 

(1 - x ’ ) ( x .  V)A - 2x2A - 2taA/at = 0. (5.44) 

From (5.35) and (5.44), we can see that k’(r, t )  satisfies equation (5.41), like V, and may 
thus be written 

(5.45) k’(r, t )  = %(()/[I + ( t  + r)’] 

where the form of %(&) is still to be determined. 
In order to precise the functions &(e) and a([)  we have to consider again the 

original equations (5.37)-(5.40). In fact, it is shown in the appendix that equation 
(5.37) is equivalent to the following relation when equations (5.39, (5.42) and (5.45) 
are used: 

(5.46) + %(5) + 2 5 a a w a 5  = 0 

and that equation (5.38) is equivalent to 

%(5)+d(5)+25aB((5)/a5 =o.  (5.47) 

The solutions of (5.46) and (5.47) are given by 

(5.49) 

where K1 and KZ are arbitrary constants. As a last step, we prove in the appendix that 

K , = K z = K .  (5.50) 

This result appears as a consequence of the original equation (5.40) when (5.35), (5.42), 
(5.43, (5.48) and (5.49) are taken into account. 

Finally, collecting all these partial results (equations (5.35), (5.36), (5.42), (5.43), 
(5 .43 ,  (5.48), (5.49) and (5.50)) ,  we find the explicit solutions 

K(5-’+ 1)  - c, 1+t2+r2 
1+(t+r)2  - t2  + i(l- x 2 ) 2  

V =  

(5.51) 

(5.52) 

where C and C‘ are arbitrary constants. These forms are the ‘electromagnetic’ 
potentials invariant under 0 ( 2 ) 0 0 ( 4 ) .  

For the sake of completeness, let us mention that it can be shown very easily from 
equations (4.21) that there is no invariant F field in the case of 0 ( 2 ) 0 0 ( 4 ) ;  the 
demonstration is completely parallel to that of 9: 5.2.2. 
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6. Discussion and conclusions 

The results of 9 5 can be summarised by the following conclusions: 

S 0 ( 3 ) 0 S 0 ( 2 , 1 ) :  F = (E, B )  # 0 

A = (V, A )  = 0 

@ = (5.3) # 0, 

(cf Beckers et a1 1978) 

(cf Beckers et a1 1978) 

(6.1) 
0 (3 ,2 ) :  F = 0 A=O @ = (5.9) # 0, 

0 ( 2 ) 0 0 ( 4 ) :  F = 0 V=(5 .52)#0  A = (5.51) # 0 

@ = (5.34) f 0 

where all these solutions have been obtained from some of the relations constituting the 
systems (4.15), (4.21) and (4.22). Conversely, it is easy to verify that they satisfy all the 
equations of these systems. 

The interest of these three maximal subgroups of the conformal group was 
mentioned in the introduction. We now have precise information on their F-, A- and 
@-invariant fields as well as on their corresponding metric tensors (Beckers and 
Jaminon 1978). We want to recall that all these results have also been obtained through 
a global method by Beckers et a1 (1978), who have studied all the conjugacy classes 
(under the Poincare group) of the maximal subalgebras of the conformal algebra. 

The specific interest of this paper consists of the exploitation of the elements 
discussed by FRW on conformal point transformations applied through our conditions 
(3.2), (3.5) and (3.6), and their corresponding infinitesimal forms (4.8) or (4.21), (4.14) 
or (4.22) and (4.15). These are effectively differential equations describing the local 
invariance of F, A and 0 fields under infinitesimal conformal point transformations. 

Among the specific results we have obtained, let us pick out the scalar density 
@ = (5.9) invariant under 0 ( 3 , 2 )  which is exactly the expression given by Fubini (1976) 
as a solution of the conformal invariant field equation of the A44 field theory. Let us 
also notice the fact that some nontrivial results obtained above can be generalised as 
follows: 

@, = ~ ( a ~  + t 2  - r’1-l (6.2) 
in the case of 0 ( 3 , 2 )  invariance, 

and 

a’ + t2  + r2 
?(a2  - t2 + r 2 ) 2  + t 2  

v, = c, 

tr 
: (a2 - r 2  + r 2 )  + t Z  

A, = C’ 

(6.3) 

(6.4) 

(6.5) 

in the case of 0 ( 2 ) 0 0 ( 4 )  invariance. These expressions (6.2)-(6.5) contain the 
parameter a when we consider, as Fubini did, the operators 

R’ =+(UP” +a-’C”) (P = 0 ,1 ,2 ,3 )  (6.6) 
which do introduce a fundamental length (Fubini 1976) or when more general coor- 
dinates are introduced (Beckers et a1 1978). 
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Finally, let us add some comments on differential geometry (Hicks 1971) where the 
determination of tensor fields invariant under some transformation Lie groups is 
intimately connected with Lie derivatives. It is well known that invariance of such 
tensor fields corresponds to the vanishing of the Lie derivative Z X Y  of these tensors Y 
with respect to the vector fields x induced by the one-parameter subgroups: 

L z X Y ( X )  = P(x)  - Y(x) = 0 (6 .7)  

x=cFa, (6 .8)  

where 

is the vector field associated here with the infinitesimal conformal transformations 
defined by (4 .2)  or ( 4 . 3 ) .  Applied to a skew-symmetric F tensor of degree two 
(two-form), to a four-vector A (one-form) and to a scalar density @ (of dimension - l ) ,  
the corresponding equations (6 .7)  are respectively 

(6 .9)  

(6 .10)  

(6.1 1) 

These conditions describe local invariance of the corresponding quantities under 
infinitesimal conformal transformations. They are equivalent to our equations (3 .2) ,  
(3 .5)  and (3 .6)  established for contravariant components. This geometrical language 
has been used extensively in the work of Beckers et a1 (1978) and we refer the reader to 
that paper for further developments. 
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Appendix 

In order to justify the results (5 .42) ,  (5 .45) ,  (5 .46) ,  (5.47) and (5 .50)  in the deter- 
mination of the four-vector A invariant under 0 ( 2 ) 0 0 ( 4 ) ,  let us introduce adequate 
variables in terms of r and t : 

( t ,  r )  + ( p ,  4):  p = r + r, 4 = r - r 

and let us define 
2 u = l + p  U = l + q 2 ,  

so that we immediately get the simple relations 

t ( u + u ) =  1 + t 2 + r 2  + ( U  - U )  = 2rt 

1 + ( t  - rI2 -t= = (5 .43) .  
1 + ( t  + r)’ - 

U _ -  
U 
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We have to solve equation (5.41) when V is given by (5.36), i.e. 

or 

av av 
ar at 

( 1  - t2+r2)--(1 + t 2 -  r2)t-- 2 ( t2 -  r2)V = o (-4.5) 

The solution of such an equation can be found by different methods (Sneddon 1957), 
but let us notice that, with (A. l ) ,  we get 

av av 
aP ag 

q ( p 2  + 1)- + p ( q 2  + 1)- + 2pq v = 0. 

If we put 

Z - _ -  z 
V =  

(1+p2)(1+q2) uv 

we obtain the equation 

az az 
au av 

u - + p = Z  

(-4.7) 

showing that Z is a homogeneous function of dimension d = 1 in U and v. Hence, we 
may write 

(A.9) z = v d ( v / u )  = v d ( [ )  

where d([) is an arbitrary function of 5 = (A.4). So we get 

(A.lO) 

Consequently, the result (5.45) is also established because it is very easy to show that 
k’(r ,  t )  defined in equation (5.35) satisfies, through (5.44), the same equation (5.41) = 
(AS)  as V. 

Now, let us prove equation (5.46). When (5.35) and (5.36) are taken into account, 
the relation (5.37) becomes 

(1  + t 2  + r2)(a v / a t )  + 2 t v  + 2rt(a v/ar) - 2rk’ = 0. ( A . l l )  

With the choices (A,l)-(A.4) and the result (5.42), we first translate the partial 
derivatives of V in terms of d and d d / d t .  Then, after a little manipulation, we get, 
through ( A . l l )  and (5 .49 ,  the announced equation 

d(5) + B(5) + 26 d d ( O / d 5  = 0.  (A.12) 

For completeness, let us notice that equations (5.39) are redundant in the sense that 
they also lead to equation (A.12). This is easily verified if we note that these three 
relations can be rewritten in vector notation in the form 

(1  + x 2 )  grad V - 2 t A  + 2 r ( l  + x .  V ) V =  0 
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so that, with ( 5 . 3 9 ,  we find 

av av 
ar at 

( 1  + t 2 +  rZ)-+ 2rV+2rt--2rk1 = 0. (A.13) 

This equation is identical with ( A . l l )  under the interchange of the variables r and t .  
Then, at the level of the variables U, U or 5, it leads to the same condition (A.12). 

The proof of equation (5.47) proceeds as follows. Starting from equation (5.38), it is 
sufficient to introduce (5.35) and to notice that the resulting equation is identical to 
( A . l l )  under the interchange of V(r, t )  and k’(r, r ) .  Thus, considerations similar to 
those leading to (A.12) give here the relation 

+ d(5) + 25 d B W d 5  = 0. (A.14) 

The last point which has to be established in this appendix corresponds to equation 
(5.50). It can be obtained from equations (5.40) by different ways. For instance, we can 
use one of the equations (5.40) not containing V. So, taking i = 1 and the y component 
of (5.40), we get 

aA’ 
ax 

( 1  +t2-r2)--2yAX +2x(1 + x .  V)AY = 0.  (A. 15) 

Then, with equations (5.35), (5.45), (5.48) and (5.49) introduced in (A.15), simple but 
lengthy calculations lead to the result 

K1 = K2( (5.50)). (A.16) 

Another way is to combine different components among the nine equations cor- 
responding to (5.40) in order to get a new relation between the functions d ( 5 )  and 
9(.$). For instance, if we take from equation (5.40) the x component for i = 1, the y 
component for i = 2  and the t component for i = 3 ,  we can obtain the following 
equation when (5.42) and (5.45) are taken into account: 

1 +35  d B  (5) B(5) + 25- = 0.  3c9p(5) + - 5-1 d5 
(A.17) 

then, with (5.48) and (5.49), we immediately get the result (A.16). 
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